Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus.
نویسندگان
چکیده
To determine whether organic cation transporter (OCT) family members might mediate choline transport in choroid plexus (CP), the handling of choline by cloned transporters and by intact CP isolated from the adult rat was investigated. Expression of OCT1 and OCT2 in Xenopus oocytes increased hemicholinium-3-sensitive choline uptake. In contrast, OCT3 did not mediate choline transport. Estimated K(m) values for choline in rOCT1-, rOCT2-, and hOCT2-expressing oocytes were 346 +/- 50, 441 +/- 67, and 102 +/- 80 microm, respectively. Membrane potential was the major driving force for choline uptake in rat and human OCT2-expressing oocytes and in intact CP in vitro. Lowering of medium pH (6 versus 7.4) was equally effective at inhibiting choline uptake in CP, suggesting that there might be a non-OCT component of choline uptake that is responsive to an H(+) gradient. However, choline efflux from CP was not stimulated by a trans-applied H(+) gradient. Choline uptake by CP was Na(+)-independent with an estimated K(m) of 183 microm. Reverse transcriptase-polymerase chain reaction detected OCT2 and OCT3, but not OCT1, mRNA expression in CP. Transfection of intact CP with a rOCT2/green fluorescent protein fusion construct resulted in strong apical membrane fluorescence with no detectable signal in the basal and lateral plasma membranes. These data indicate that OCT2 mediates choline transport across the ventricular membrane of CP.
منابع مشابه
Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats.
The aim of this study was to quantitatively determine the constitutive expression levels of various transporter mRNAs in rat choroid plexus. To provide a reference for the relative expression levels, the expression of various transporter mRNAs in choroid plexus were compared with that in liver, kidney, and ileum. The mRNA levels of multidrug resistance protein (Mrp)1, 2, 3, 4, 5, and 6; multidr...
متن کاملStress-induced stimulation of choline transport in cultured choroid plexus epithelium exposed to low concentrations of cadmium.
The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and accumulates essential minerals and heavy metals. Choroid plexus is cited as being a "sink" for heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic agents in the brain. An understanding of how low doses of contaminant metals might alter transport of other solutes in the choroid...
متن کاملOrganic anion transport in choroid plexus from wild-type and organic anion transporter 3 (Slc22a8)-null mice.
The choroid plexus actively transports endogenous, xenobiotic, and therapeutic compounds from cerebrospinal fluid to blood, thereby limiting their exposure to the central nervous system (CNS). Establishing the mechanisms responsible for this transport is critical to our understanding of basic choroid plexus physiology and will likely impact drug targeting to the CNS. We recently generated an or...
متن کاملStress Modulation of Solute Transport in Choroid
33 The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and 34 accumulates essential minerals and heavy metals. Choroid plexus is cited as being a ‘sink’ for 35 heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic 36 agents in the brain. Understanding of how low doses of contaminant metals might alter transport 37 of other solutes in...
متن کاملInflux mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study
The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and adult with additional data obtained at intermediate ages from microarray analysis. The largest repres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 45 شماره
صفحات -
تاریخ انتشار 2001